
Lecture 15

Spatial Discretization and Solution of the

Sn Equations

1 Source Iteration

The Sn equations can be expressed as follows,

µm
∂ψ

∂x
+ σt ψm = Qm , m = 1, N. (1)

where

Qm =
L∑

k=0

2k + 1

4π
(σkφk + qk)Pk(µm) , (2a)

σk = 2π

∫ +1

−1

σs(µ0)Pk(µ0) dµ0 , (2b)

φk =
N∑

m=1

ψmPk(µm)wm , (2c)

qk = 2π

∫ +1

−1

q(µ)Pk(µ) dµ. (2d)

It is important to recognize that all coupling between directions occurs on the right side of

Eq. (1), and that the left side of that equation represents a set of angularly-independent
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Figure 1: Spatial indexing.

first-order differential equations. Since such equations are easily solved once they have been

spatially discretized, the following iterative solution technique naturally comes to mind:

µm
∂ψ�+1

m

∂x
+ σtψ

�+1
m = Q�

m , (3)

where � is the iteration index. This is called source iteration simply because the scattering

source lagged. The source iteration process has a physical interpretation. If one initially

starts with a zero guess for the scalar flux, each source iteration adds the contribution from

another generation of scatter to the flux solution. For instance, the first iteration yields

the uncollided flux, the second iteration yields the uncollided plus first-collided flux, the

third iteration yields the uncollided plus first-collided plus second-collided flux, etc. To

understand the numerical solution process for solving the source iteration equations, we

must first consider spatial discretization of the Sn equations.

2 Spatial Discretization

The indexing for spatial discretization is shown in Fig. 1. Note from that figure that cell-

edge quantities carry half-integral indices and cell-average quantities carry integral indices,

and that the total number of mesh cells is denoted by I. For reasons that will eventually
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become clear, we need only consider the spatial discretization for a single cell and the

solution of the source iteration equations for that cell. The first step in the discretization

process is to spatially integrate Eq. (3) over the cell to obtain a balance equation:

µm

(
ψ1+ 1

2
,m − ψi− 1

2
,m

)
+ σt,i∆xiψi,m = Qi,m∆xi , (4)

where

ψi,m =
1

∆xi

∫ x
i+1

2

x
i− 1

2

ψm(x)dx , (5a)

Qi,m =
1

∆xi

∫ x
i+1

2

x
i− 1

2

Qm(x) dx . (5b)

It is important to note that Eq. (4) is exact. All we have done is integrate the equation

over the cell. Since we seek to solve our equations over a single cell, we must assume that

the incoming cell-edge fluxes are known, i.e., ψi− 1
2
,m for µm > 0 and ψi+ 1

2
,m for µm < 0.

This would be the case on a mesh consisting of a single cell since these fluxes would be

defined by boundary conditions. We will see later that the assumption of known incoming

fluxes is fully justified. This means that we must solve for the average and outgoing fluxes

in each direction. Thus we need two equations for each direction. However at present we

have only one equation per direction - the balance equation. To close the system, we must

define an additional equation for each direction. This additional equation per direction

is known as the auxiliary equation. One of the most common auxiliary equations is the
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diamond difference relationship:

ψi,m =
1

2

(
ψi+ 1

2
,m + ψi− 1

2
,m

)
. (6)

Perhaps the simplest auxiliary equation is the step relationship:

ψi+ 1
2
,m = ψi,m µm > 0,

ψi− 1
2
,m = ψi,m µm < 0, (7)

The diamond relationship gives second-order accuracy, but is not necessarily positive.

The step relationship is positive, but only gives first-order accuracy. Equation (4) and

either Eq. (6) or Eq. (7)) enable us to solve for the average and outgoing fluxes in a cell

given the incoming fluxes. We stress that the equations for each direction are completely

independent of one another. All angular coupling appears on the right side of the equation

and is iterated upon.

Given the equations for a single cell, it is very easy to solve for all of the fluxes on a

multicell mesh. For instance, let assume that the quadrature points are indexed in order

of increasing cosine. Then µ1 through µN
2

are negative and µN
2

+1 through µN are positive.

One can begin the solution process by solving for ψI,1 and ψI− 1
2
,1 , where I is the total

number of cells in the mesh. One will know ψI+ 1
2
,1 from the boundary condition at the

right face. With a vacuum or source condition, these values are explicitly known, but with

a reflective condition, one must set the incoming values to the appropriate outgoing flux
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values using the latest iterate for the outgoing values. Such a boundary condition is called

implicit because the incoming fluxes are implicitly known rather than explicitly known.

After solving for ψI− 1
2
,1, one has the necessary values to solve for ψI−1,1 and ψI− 3

2
,1. The

solution process or “sweep” proceeds across each cell until the left boundary is reached. The

process is then repeated for all remaining fluxes with µ < 0. Next one uses the boundary

condition at the left face to determine ψ 1
2
, N
2

+1, and then similarly proceeds through the

mesh successively solving for the average and outgoing fluxes in each cell until the right

boundary is reached. The process is then repeated for all remaining fluxes having µ > 0.

At this point, one full sweep (and one full source iteration) has been completed. If there

is no scattering and both of the boundary conditions are explicit, the SN equations will be

completely solved after one sweep. This completes our description of the source iteration

or sweep process.

3 Advanced Spatial Discretizations

Advanced spatial discretizations are generally characterized by either having more than two

spatial unknowns per cell or having an auxilliary equation that captures some form of trans-

port physics. Note that the diamond and step relationships are not specific to the transport

equation. On the other hand, the linear-discontinuous (LD) finite element scheme has an
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auxilliary equation that is obtained by a Galerkin process. Such an auxilliary equation

clearly captures some transport physics since it is obtained from the transport equation

itself. We note that the LD scheme can be derived in many ways. We choose to derive it in

a way that results in an auxilliary equation with an obvious physical interpretation. The

trial space is defined as follows for µm > 0,

ψ̃ = ψi− 1
2
,m , for x = xi− 1

2
,

= ψi,m +
(
ψi+ 1

2
,m − ψi,m

) 2(x− xi)

∆xi

, for x ∈ (xi− 1
2
, xi+ 1

2
], (8a)

and as follows for µm < 0,

ψ̃ = ψi,m +
(
ψi,m − ψi− 1

2
,m

) 2(x− xi)

∆xi

, for x ∈ [xi+ 1
2
, xi+ 1

2
),

= ψi+ 1
2
,m , for x = xi+ 1

2
, (8b)

An analogous representation is assumed for the inhomogeneous source. The auxilliary

equation for µm > 0 is obtained by substituting from Eq. (8a) (and its analogue for the

source representation) into Eq. (1), multiplying by (x − xi− 1
2
)/∆xi, and integrating over

the cell:

µ(ψi+ 1
2
,m − ψi,m) + σt,i

(
2

3
ψi,m +

1

3
ψi+ 1

2
,m

)
∆xi

2
=

(
2

3
Qi,m +

1

3
Q̂i+ 1

2
,m

)
∆xi

2
, (9)
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where Q̂i+ 1
2
denotes the “cell-interior” angular flux at xi+ 1

2
,

Q̂i+ 1
2

= Qi+ 1
2
,m , for µm > 0,

= 2Qi,m −Qi− 1
2
,m , for µm < 0, (10a)

generated with the cell-interior angular fluxes at x = xi+ 1
2
:

ψ̂i+ 1
2
,m = ψi+ 1

2
,m , for µm > 0,

= 2ψi,m − ψi− 1
2
,m , for µm < 0, (10b)

Equation (9) clearly represents an approximate statement of balance over the right half

of the cell. Many advanced schemes can be represented in terms of a rigorous balance

equation for the whole cell together with auxilliary equations that represent approximate

balance equations for portions of the cell. This is often referred to as the multiple-balance

representation for a discretization scheme. The auxilliary equation for µm < 0 is completely

analogous to that for µ > 0, and is obtained by substituting from Eq. (8b) into Eq. (1),

multiplying by (xi+ 1
2
− x)/∆xi, and integrating over the cell:

µ(ψi,m − ψi− 1
2
,m) + σt,i

(
2

3
ψi,m +

1

3
ψi− 1

2
,m

)
∆xi

2
=

(
2

3
Qi,m +

1

3
Q̂i− 1

2
,m

)
∆xi

2
. (11)

Many advanced discretization schemes can also be represented in terms of approximate

balance equations over subregions of the cell, where the subregions are disjoint and the

union of the subregions is the whole cell. For instance, let us assume an LD trial space
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representation as follows for µ > 0,

ψ̃m = ψi− 1
2
,m , for x = xi− 1

2
,

= ψL,i,m

(xi+ 1
2
− x)

∆xi

+ ψR,i,m

(x− xi− 1
2
)

∆xi

, for x ∈ (xi− 1
2
, xi+ 1

2
], (12a)

and as follows for µm < 0,

ψ̃m = ψL,i,m

(xi+ 1
2
− x)

∆xi

+ ψR,i,m

(x− xi− 1
2
)

∆xi

, for x ∈ [xi+ 1
2
, xi+ 1

2
),

= ψi+ 1
2
,m , for x = xi+ 1

2
, (12b)

An analogous representation is assumed for the distributed source. Substituting from

Eq. (12a) into the Eq. (1) multiplying by
(x

i+1
2
−x)

∆xi
and integrating over the the cell, we

obtain an equation for ψL,i,m:

µm

[
1

2
(ψL,i,m + ψR,i,m)− ψR,i−1,m

]
+ σt,i

(
2

3
ψL,i,m +

1

3
ψR,i,m

)
∆xi

2
=

(
2

3
QL,i,m +

1

3
QR,i,m

)
∆xi

2
. (13)

Note that Eq. (13) represents an approximate balance equation for the left half of the cell.

Proceeding similarly, but weighting with
(x−x

i− 1
2
)

∆xi
, we obtain an equation for ψR,i,m:

µm

[
ψR,i,m − 1

2
(ψL,i,m + ψR,i,m)

]
+ σt,i

(
2

3
ψR,i,m +

1

3
ψL,i,m

)
∆xi

2
=

(
2

3
QR,i,m +

1

3
QL,i,m

)
∆xi

2
. (14)
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Note that Eq. (14) represents an approximate balance equation for the right half of the

cell. The equations for µ < 0 are analogous:

µm

[
1

2
(ψL,i,m + ψR,i,m)− ψL,i−1,m

]
+ σt,i

(
2

3
ψL,i,m +

1

3
ψR,i,m

)
∆xi

2
=

(
2

3
QL,i,m +

1

3
QR,i,m

)
∆xi

2
. (15)

and

µm

[
ψL,i+1,m − 1

2
(ψL,i,m + ψR,i,m)

]
+ σt,i

(
2

3
ψR,i,m +

1

3
ψL,i,m

)
∆xi

2
=

(
2

3
QR,i,m +

1

3
QL,i,m

)
∆xi

2
. (16)

Equations (13) through (16) represent the LD equation in corner balance form. Summing

the approximate balance equations for the left and right halves of the cell yields the balance

equation for the whole cell.

3.1 Finite Element Lumping

It is often useful to give up a certain degree of accuracy in return for more robustness in a

discretization scheme. By robustness, we generally mean the ability to yield well behaved

(though not necessarily accurate) solutions on poorly resolved meshes. In general, this is

achieved in finite-element methods by using a quadrature formula with quadrature points

at the mesh-cell vertices to perform the finite-element integrations rather than performing

them analytically or with Gauss quadrature. The effect of using such quadrature sets

9



is to reduce the span of the discrete stencil or make the matrix representation for the

discretization “more diagonal.” For instance, let us consider the LD method and perform

the integrals using a trapezoidal-rule quadrature. This quadrature has two points that are

located at xi− 1
2
and xi+ 1

2
, and each point carries a weight of ∆xi/2. The integration of

the perfect derivative resulting from the integration by parts is always carried out before

applying the quadrature formula because quadratures can never be expected to properly

integrate delta-function derivatives. For instance, let us assume an arbitrary LD trial space

representation, ψ̃, and an arbitary weighting function, W (x). A lumped approximation for

the equation associated with the weighting function, would be obtained by applying the

trapezoidal quadrature to the following equation:

µm

(
Wi+ 1

2
ψ̃i+ 1

2
,m −Wi− 1

2
ψ̃i− 1

2
,m

)
−

∫ x
i+1

2

x
i− 1

2

ψ̃
∂W

∂x
dx+

∫ x
i+1

2

x
i− 1

2

σtWψ̃m dx =

∫ x
i+1

2

x
i− 1

2

WQm dx . (17)

Note from that the perfect derivative arising from the integration by parts of the gradient

term has been performed analytically. In general, maintaining acceptable accuracy in the

lumping process requires that the integration be exact if the weight function is unity, i.e.

for the balance equation. The trapezoidal quadrature is indeed exact for the integrals

in Eq. (17) when W (x) = 1. To give a specific example, we substitute from Eq. (8a)

(and its analogue for the source representation) into Eq. (1), multiply that equation by
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(x− xi− 1
2
)/∆xi, and integrating over the cell using the trapezoidal quadrature formula:

µ(ψi+ 1
2
,m − ψi,m) + σt,iψi+ 1

2
,m

∆xi

2
= Q̂i+ 1

2
,m

∆xi

2
, (18)

where Q̂i+ 1
2
is defined by Eqs. (10a) and (10b). Comparing Eq. (18) with its unlumped

analogue given by Eq. (9), we find that the the removal and source terms in Eq. (18) do

have reduced spatial coupling.
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